Apolonius Theorem :-
In ABE :-
In AED :-
In AEC
:-
Here AD is median of Triangle ABC.
Acc. to Apolonius Theorem AB2 + AC2
=2(AD2 + BD2 )
PROOF:-
1. Draw perpendicular AE to Side BC

AB2 = BE2 + AE2 (1)

AD2 = ED2 + AE2 (2)
Now subtracting eq 2 from eq 1:-
AB2- AD2= BE2 + AE2
- ED2 - AE2
AB2 = BE2 + AD2 - ED2
AB2 = AD2 + (BE- ED) (BE+ ED )
AB2 = AD2 + (BE- ED) BD (3)

AC2 = EC2 + AE2
AC2 = EC2 + AD2 - ED2
(From eqn. 2)
AC2 = AD2 + (EC- ED) (EC+ ED )
AC2 = AD2 + DC(EC+ED)
Now DC=BD as D is mid point of BC
AC2 = AD2 + BD(EC+ED) (4)
Now Adding eqn. 3 & 4
AB2 + AC2= AD2 + (BE- ED) BD + AD2
+ BD(EC+ED)
AB2 + AC2= 2 AD2 +
BD(BE-ED+EC+ED)
AB2 + AC2= 2 AD2 + BD (
BE+EC)
AB2 + AC2= 2 AD2 + BD 2BD
AB2 + AC2= 2 AD2 + 2 BD2
(H.P)
No comments:
Post a Comment
Thanks for your interest