Tuesday, January 3, 2017

Apolonius Theorem Proof

Apolonius Theorem :-

Here AD is median of Triangle ABC. 
Acc. to Apolonius Theorem  AB+ AC2 =2(AD2 + BD2 )

PROOF:-
  1. Draw perpendicular AE to Side BC


In        ABE :-

AB2 = BE2 + AE2                  (1)

In        AED :-

AD2 = ED2 + AE2                 (2)

Now subtracting eq 2 from eq 1:-
AB2- AD2= BE2 + AE2 - ED2 - AE2   
AB2 = BE2 + AD2 -  ED2            
AB2 = AD2 + (BE- ED)  (BE+ ED )
AB2 = AD2 + (BE- ED)   BD             (3)

In        AEC :-

AC2 = EC2 + AE2 
AC2 = EC2 + AD2 -  ED2            (From eqn. 2)
AC2 = AD2 + (EC- ED)  (EC+ ED )
AC2 = AD2 + DC(EC+ED)

Now DC=BD as D is mid point of BC

AC2 = AD2 + BD(EC+ED)                  (4)

Now Adding eqn. 3 & 4

AB2 + AC2= AD2 + (BE- ED)   BD   + AD2 + BD(EC+ED)
AB2 + AC2= 2 AD2 + BD(BE-ED+EC+ED)
AB2 + AC2= 2 AD2 + BD ( BE+EC)
AB2 + AC2= 2 AD2 + BD 2BD
AB2 + AC2= 2 AD2 + 2 BD2        (H.P)






No comments:

Post a Comment

Thanks for your interest